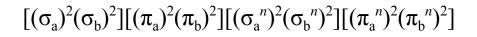
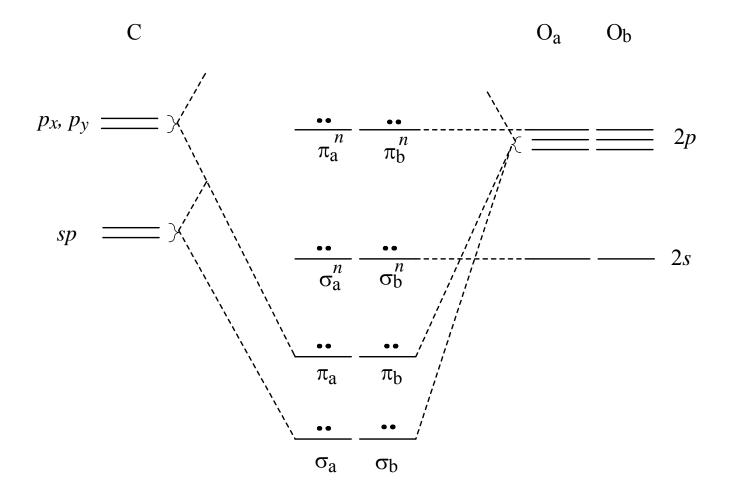

MX_n Molecules with Pi-Bonding

- ✓ BeH₂ and CH₄ do not have pi bonding, because the 2p orbitals on hydrogen lie too high in energy for effective overlap with central atom AOs.
- ✓ Pi bonding *may* be possible with pendant atoms from the second and higher periods.
- Consider pi bonding in CO_2 .

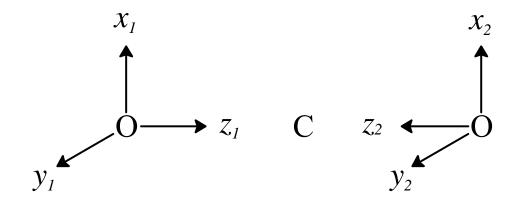



Simple VB Model of CO₂

- ✓ Carbon 1s is assumed not to be involved in bonding (i.e., core electrons).
- ✓ Carbon is assumed to be *sp* hybridized, using 2*s* and $2p_z$ orbitals.
- \checkmark Pendant oxygen 2*s* orbitals are assumed to be nonbonding.
- ✓ Sigma-bonding interactions are between oxygen $2p_z$ orbitals and carbon *sp* hybrids.
- ✓ Pi-bonding interactions are between oxygen $2p_x$ or $2p_y$ orbitals with "empty" 2p orbitals of the same kinds on the central carbon.

Implied Localized MO Model

CO₂ General MO Model Starting Assumptions


- 1. Only 2*s* and 2*p* orbitals on C are used in bonding. The 1*s* orbital will be a "core" non-bonding level in the MO scheme.
- 2. Only the 2*p* orbitals on the two O atoms are used in bonding. The two 2*s* orbitals are assumed to form a pair of nonbonding MOs:

$$\sigma_g^n = \frac{1}{\sqrt{2}} (2s_a + 2s_b)$$

$$\sigma_u^n = \frac{1}{\sqrt{2}} (2s_a - 2s_b)$$

These assumptions will need to be examined in light of experimental data, once the MO scheme has been constructed.

Vector Basis for a Representation of Oxygen SALCs

CO_2 General MO Model Using D_{2h} as a Working Group for the Representation

✓ To avoid the problems of reducing a representation in the infiniteorder group $D_{\infty h}$, we will construct the reducible representation for the oxygen SALCs in the finite-order subgroup D_{2h} .

D_{2h}	E	$C_2(z)$	$C_2(y)$	$C_2(x)$	i	$\sigma(xy)$	$\sigma(xz)$	$\sigma(yz)$		
$\Gamma_{\rm SALC}$	6	-2	0	0	0	0	2	2	Σ	$\Sigma/8$
A_{g}	6	-2	0	0	0	0	2	2	8	1
B_{1g}	6	-2	0	0	0	0	-2	-2	0	0
B_{2g}	6	2	0	0	0	0	2	-2	8	1
B_{3g}	6	2	0	0	0	0	-2	2	8	1
A_u	6	-2	0	0	0	0	-2	-2	0	0
B_{1u}	6	-2	0	0	0	0	2	2	8	1
B_{2u}	6	2	0	0	0	0	-2	2	8	1
B_{3u}	6	2	0	0	0	0	2	-2	8	1

 $\Gamma_{\text{SALC}} = A_g + B_{2g} + B_{3g} + B_{1u} + B_{2u} + B_{3u} \text{ in } D_{2h}$

 $\Gamma_{\text{SALC}} = \Sigma_g^{+} + \Pi_g + \Sigma_u^{+} + \Pi_u \text{ in } D_{\sim h}$

AOs on carbon:

$$\Sigma_g^+ = 2s \qquad \Sigma_u^+ = 2p_z \qquad \Pi_u = (2p_x, 2p_y)$$

CO₂ General MO Model Sigma MOs

$$\Sigma_{g}^{+}: \qquad \sigma_{g}(s) = c_{1}^{2}2s + c_{2}^{2}\left\{\frac{1}{\sqrt{2}}\left[2p_{z}(a) + 2p_{z}(b)\right]\right\}$$

$$\Sigma_{g}^{+}: \qquad \sigma_{g}^{*}(s) = c_{3}2s - c_{4}\left\{\frac{1}{\sqrt{2}}\left[2p_{z}(a) + 2p_{z}(b)\right]\right\}$$

$$\Sigma_{u}^{+}: \qquad \sigma_{u}(z) = c_{5} 2p_{z} + c_{6} \left\{ \frac{1}{\sqrt{2}} \left[2p_{z}(a) - 2p_{z}(b) \right] \right\}$$

 Σ_u^+ :

$$\sigma_{u}^{*}(z) = c_{7} 2p_{z} - c_{8} \left\{ \frac{1}{\sqrt{2}} \left[2p_{z}(a) - 2p_{z}(b) \right] \right\}$$

$$\sigma_g(s)$$

$$\sigma_u^*(z)$$

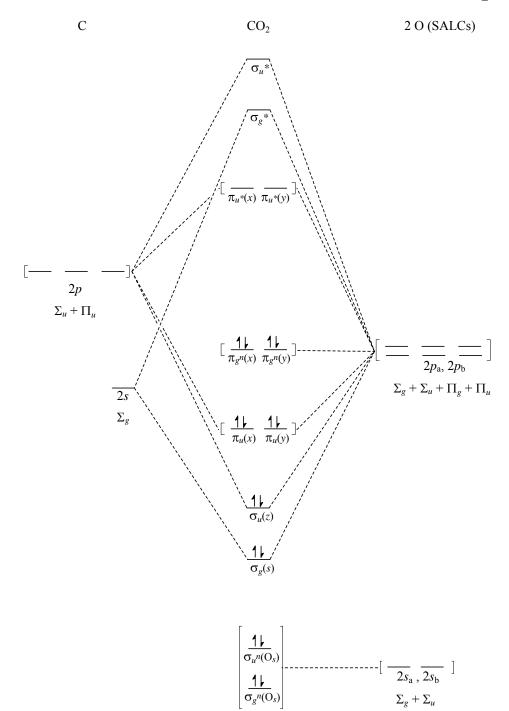
CO₂ General MO Model Pi MOs

$$\Pi_{u}: \qquad \pi_{u}(x) = c_{9} 2p_{x} + c_{10} \left\{ \frac{1}{\sqrt{2}} [2p_{x}(a) + 2p_{x}(b)] \right\}$$

$$\Pi_{u}: \qquad \pi_{u}(y) = c_{11} 2p_{y} + c_{12} \left\{ \frac{1}{\sqrt{2}} [2p_{y}(a) + 2p_{y}(b)] \right\}$$

$$\Pi_{u}: \qquad \pi_{u}^{*}(x) = c_{13} 2p_{x} - c_{14} \left\{ \frac{1}{\sqrt{2}} [2p_{x}(a) + 2p_{x}(b)] \right\}$$

$$\Pi_{u}: \qquad \pi_{u}^{*}(y) = c_{15} 2p_{y} - c_{16} \left\{ \frac{1}{\sqrt{2}} [2p_{y}(a) + 2p_{y}(b)] \right\}$$


CO₂ General MO Model Nonbonding Pi MOs

$$\Pi_{g}: \qquad \pi_{g}^{n}(x) = \frac{1}{\sqrt{2}} \Big[2p_{x}(a) - 2p_{x}(b) \Big]$$

$$\Pi_{g}: \qquad \pi_{g}^{n}(y) = \frac{1}{\sqrt{2}} \Big[2p_{y}(a) - 2p_{y}(b) \Big]$$

$$\pi_g^{n}(x)$$
 or $\pi_g^{n}(y)$

Qualitative Delocalized MO Scheme for CO₂

CO₂ General MO Model Predicted Electronic Configuration

 $[\sigma_{g}^{n}]^{2}[\sigma_{u}^{n}]^{2}[\sigma_{g}(s)]^{2}[\sigma_{u}(z)]^{2}\{[\pi_{u}(x)]^{2}[\pi_{u}(y)]^{2}\}\{[\pi_{g}^{n}(x)]^{2}[\pi_{g}^{n}(y)]^{2}\}$

In simplified notation:

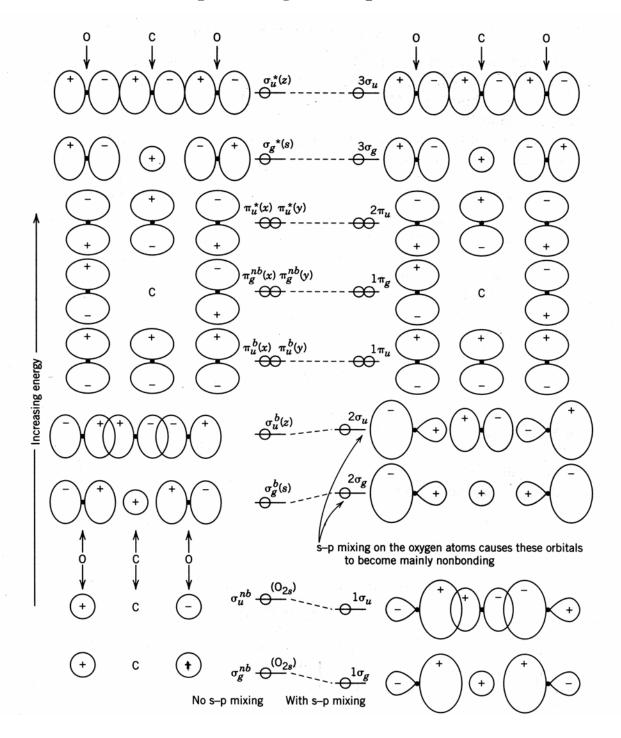
 $(\sigma_g^n)^2(\sigma_u^n)^2[\sigma_g(s)]^2[\sigma_u(z)]^2[\pi_u(x,y)]^4[\pi_g^n(x,y)]^4$

P.E.S. Spectrum of CO₂

Fou

r observed bands consistent with the electronic configuration from the MO scheme $(\sigma_g^n)^2(\sigma_u^n)^2[\sigma_g(s)]^2[\sigma_u(z)]^2[\pi_u(x,y)]^4[\pi_g^n(x,y)]^4$. (Core $(\sigma_g^n)^2(\sigma_u^n)^2$ configuration requires too high an ionization energy to be seen with u.v. P.E.S.)

- ✓ Lack of fine structure on first band is consistent with the nonbonding character of the configuration $[\pi_g^n(x,y)]^4$.
- ✓ Only the second band, due to $[\pi_u(x,y)]^4$, shows pronounced fine structure consistent with ejection of electrons from bonding MOs.


s-p Mixing in CO₂

- ✓ Lack of fine structure on bands due to ionizations from the lowest lying MOs with the configuration $[\sigma_g(s)]^2 [\sigma_u(z)]^2$ suggests that they are virtually nonbonding.
- ✓ Nonbonding character of these MOs results from *s*-*p* mixing.
 - The SALCs formed by 2s orbitals on oxygen atoms, which we have assumed to be nonbonding core electrons, have the same symmetries as the SALCs formed from $2p_z$ orbitals on the oxygen atoms; i.e., Σ_g^+ , Σ_u^+ .

- On the basis of symmetry, these SALCs are as capable of forming MOs with like-symmetry AOs on carbon as the $2p_z$ SALCs we used in our model.
- The *s* and p_z -SALCs mix, making the formerly nonbonding $\sigma_g(O_{2s})$ and $\sigma_u(O_{2s})$ SALCs lower in energy and more bonding in nature through overlap with carbon 2*s* and 2 p_z orbitals, respectively. These are now designated $[1\sigma_g]^2[1\sigma_u]^2$.
- The formerly bonding MOs $\sigma_g(s)$ and $\sigma_u(z)$ move up in energy, becoming less bonding in character (more antibonding), and their configuration should be re-designated $[2\sigma_g^n]^2[2\sigma_u^n]^2$.
- Energy levels with the same symmetry in a molecular system repel one another, such that one level becomes lower energy (is stabilized) and the other level becomes higher energy (is destabilized).

Effect of s-p Mixing on CO₂ MO Levels

CO₂ General MO Model Corrected Electronic Configuration Based on P.E.S. Data

 $[1\sigma_{g}]^{2}[1\sigma_{u}]^{2}[2\sigma_{g}^{n}]^{2}[2\sigma_{u}^{n}]^{2}\{[1\pi_{u}(x)]^{2}[1\pi_{u}(y)]^{2}\}\{[1\pi_{g}^{n}(x)]^{2}[1\pi_{g}^{n}(y)]^{2}\}$

In simplified notation:

 $(1\sigma_g)^2(1\sigma_u)^2(2\sigma_g^n)^2(2\sigma_u^n)^2(1\pi_u)^4(1\pi_g^n)^4$

There are still four pairs in bonding MOs over two C–O bonds, so the bond order of each is still 2.